
Consistent Detection
of Global Predicates*

Robert Cooper
Keith Marzullo

TR 91-1200

April 1991

/,_ ,,'_ Z-J

l/V,- -_J_ c_tCf

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under DARPA/NASA subcontract NAG2-593, Contract N00140-87-C-8904,
and by grants from IBM and Siemens. The views, opinions, and findings contained
in this report are those of the authors and should not be construed as an official
Department of Defense position, policy, or decision. This paper will appear in the
Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed
Debugging.





Consistent Detection of Global Predicates*

Robert Cooper Keith Marzullo

Department of Computer Science

Cornel] University

Ithaca NY 14853, USA

Abstract

A fundamental problem in debugging and monitoring is detecting

whether the state of a system satisfies some predicate. If the system

is distributed, then the resulting uncertainty in the state of the sys-

tem makes such detection, in general, ill-defined. This paper presents

three algorithms for detecting global predicates in a well-defined way.

These algorithms do so by interpreting predicates with respect to the

communication that has occurred in the system.

A fundamental problem in debugging and monitoring is detecting whether

the state of a system satisfies some predicate. If the system is distributed,

then the resulting uncertainty in the state of the system makes such de-

tection, in general, ill-defined. This paper presents three algorithms for

detecting global predicates in a well-defined way. These algorithms do so by

interpreting predicates with respect to the commtmication that has occurred

in the system. Briefly, the first algoritlma determines that the predicate was

possibly true at some point in the past; the second determines that the pred-

icate was definitely true in the past; while the third algorithm establishes
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that the predicate is currentl_ true, but to do so it may delay the execution

of certain processes.

Our approach is in contrast to the considerable body of work that uses

temporal predicates (i.e., predicates expressed over process histories) for dis-

tributed monitoring. Temporal predicates are more powerful, but also more

complex to use. In many cases, the condition that the programmer wishes

to monitor is simply and intuitively viewed as a predicate over the "in-

stantaneous" state of the system. Using the possibly/definitely/currently

interpretation such a pr_licate becomes well-defined, without requiring it

to be recast using temp_ _sl formulas. Further, our algorithms may be more

efficient than techniques that use a notion of explicit time or process histo-

ries. Section 1 specifies the protocols and Section 2 gives an outline of their

operation.

This work arose as part of Meta, a toolkit supporting distributed system

monitoring and control. The architecture addressed by Meta is more general

than that needed for debugging, in that we are also concerned with several
r

monitoring components reacting in a consistent and fault-tolerant manner.

Section 3 discusses how the algorithms of this paper can be used to provide

a breakpoint and tracepoint facility for Meta.

1 Uncertainty in Distributed Systems

Suppose we have a set of n processes P - {P1,1_,. •., P,_} that communicate

only by message passing, and we have a moni_Trinq _oces8 _ that wishes

to determine if the state of P satisfies a global state property @. In general,

the uncertainty in the state of the system makes such determination impos-

sible. For example, if each process has an integer-valued variable z and @ is

"the median value o[ z is greater than 10", then Po would have to know the

simultaneous value of at least half of the variables to determine whether

holds.

Following are two ways that _ can be changed so that it is meaningful

in the face of uncertainty:



GPI: There is an executionof P consistent with its observed behavior

such that _ was true at a point in that execution. We will refer to

this property as possibly _.

GP2: For all executions of P consistent with its observed behavior, _ was

true at some point. We will refer to this property as definitely _.

Both of these conditions refer to some past state or states of P; a third

property can be detected if it is acceptable to temporarily block processes:

GP3: _ currently holds, and there is a logical execution of the unblocked

system such that _ holds. We will refer to this property as currently

Our protocols are based on each process in P informing p0 when a lo-

cal event changes some local state on which _ depends. We say that such

events potentially change _. Then, po constructs the partial order of events,

represented compactly as vectors of timestamps [7], in order to determine

whether possibly _ or definitely _ held. The first two conditions are illus-

trated in Figure 1. In this space-time diagram, three processes Pl,P2,P3

have variables zl,z2,z3 respectively. Possibly (zl > 10) ^ (z2 > 10) and

definitely (zl > 10) ^ (zs > 10) hold in this execution.

zl := 11

P X2: x2:

z I :-- 9

I\

Figure 1: _I, = (at least two of the three z v'._riables are greater than 10).

t _



These three specifications provide different ways to manage the uncer-

tainty of debugging in a distributed environment. The distinction between

Possibly and definitely arises from the relative nature of time in a distributed

system [4]. To an omniscient observer with a global clock, two events that

we regard as concurrent (i.e. a _ b ^ b 74 a) will have some total order.

We cannot determine this total order in any practical way, but determining

that some predicate was possibl9 true provides us with valuable information

about the behavior of the program. For instance, if _ identifies some er-

roneous state of the program, possibly _ holding almost certainly indicates

a bug, even if the predicate was not true during this execution as seen by

our omniscient observer. Further, for GP2, note that our specification does

not include all cases in which the predicate holds, but only those cases de-

tectable by observing the messages sent by each process in the system. In

particular, if no communication takes place, no predicate will be detected.

Additional uncertainty arises from the delays in monitoring, and effect of

monitoring on the computation at hand. When detecting a global predicate,

there is in general an unavoidable delay between local predicates becoming

potentially true and the entire global predicate becoming true. Thus we

can either detect the predicate in the past (GP1 and GP2) or we must

block the computation at critical points. How much do these restrictions

confound the debugging process? The definitions GP1 and GP2 imply that

the predicate of interest may no longer be true when detection is reported,

e.g. when the program is halted in order to examine local state. This is

so if the predicate is not stable [1]. Thus one must either record relevant

program state and include it in the messages sent to the monitoring process,

or rely on some program replay or reversible execution technique to recover

the state of interest.

With definition GP3, we report the predicate when it is currently true

in the global program state. However to achieve this we have to delay exe-

cution of some processes. This is can be a serious impediment to debugging.

By blocking some processes when the predicate becomes potentially true,



wemaymakethe predicateeithermoreor lesslikely to occur.Forexample,
a predicatemay be lesslikely to occurif processes"communicate" using

timeouts or some other uncontrolled form of communication. The latter is

a particular problem when processes are multithreaded; that is, consisting

of multiple, independently schedulable threads of control which may com-

municate through shared memory. It is rarely practical to monitor such

communication when debugging without hardware or language support.

2 Algorithms

2.1 Detecting Possibly • and Definitely

The algorithms for detecting possibly _ and definitely _ are based on the

same data structure: the lattice of consistent global states that correspond

with an observed execution. Such a lattice consists of n orthogonal axes,

with one axis for each monitored process. A point _ - (zl,z2,...,xn) in

this lattice corresponds to a global state in which process Pi has taken z_

steps. Of course, not all values of (zl,z2,...,Zn) denote a point in the

lattice, depending on the causal dependencies among the local states of P.

Define the level of a point _ to be the sum of its indices zl + z2 + ... + zn.

Consider an observed behaviour of a system. A possible execution of

this system is a total order of (consistent) global states in which exactly one

process takes a step between adjacent global states. In terms of the lattice

corresponding with the observed behavior, a possible execution is a path in

this lattice where the level of each subsequent point in the path increases by

one. A space-time diagram of a two-processes system and the corresponding

lattice of global states is illustrated in Figure 2. A point $i_ represents a

state in which process Pt is in its ith state and process P2 is in its jth state.

From the lattice, it is easy to see that one possible execution is the sequence

of global states

$1,1; $2,1; $2,2; $2,3; $3,3; $4,3- • •

For every point _ in a lattice, there exists an execution that passes
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through _-. Hence, if any point in the lattice satisfies _, then by GP1

possibly • holds. The property definitely _ requires M1 possible executions

to pass through a point that satisfies _. For example, in Figure 2 if the points

{$4,3, $3,4} both represent states that satisfy _ then definitely _ holds. This

is because {$4,3, $3,4} are the only points with a level of 7 and all executions

must include exactly one point with any given level. Definitely _ also holds

if the states represented by points {$5,3, S3,5, $6,4, Ss,5, 54,6} all satisfy _.

This is because if the execution does not pass through Ss,3 or $3,5, then it

must pass through $4,4 and hence through one of {Ss,4, Ss,5, S4,s}.

Figures 3 and 4 give hlgh-level algorithms used by the monitoring pro-

cess P0 to detect possibly _ and definitely _ respectively. The definitely ,_

algorithm iteratively constructs the set of global states that have a level Ivl

and are reachable from the initial state without passing through a global

state that satisfies _. If there are no such states, then definitely _ holds by

the level lvl.

In order to implement the algorithms in Figures 3 and 4, the monitored

processes send their local states to the monitor Po. P0 maintains sequences

of these states, one sequence per process, and assembles them into the nec-

essary global states. The monitor must be able to determine when it can

assemble all the reachable global states of a given level and when it can drop

a local state from its sequence because the local state will not appear in any

further global states of interest. To achieve this, we use vector time stamps.

Let Qi be the sequence of states that Po maintains for Pl stored in FIFO

order. Each state el in Qi is labeled with a vector time stamp V(el) where

V(ei)[i] is the event number ofpi that resulted in this state and V(ei)_],j #

i is the number of the latest event of P1 that pi is aware of. For example, in

Figure 2, the vector timestamp of the fourth event of process Pl is (4,1). A

set of local events {el, e2,..., en} with el from process Pi comprise a valid

global state ifl"

Vi, j: 1 _< i,j <_ n : V(ei)[i] >_ V(ej)[i]



Intuitively, this condition states that a message cannot be received before it

is sent. Note that the level of this global state is _=1 V(eu)[u].

For every event e_ of process p_ there exists a minimum global state

Sm_n(e_) that contains e_ and a mazimum global state S,,ax(e_) that contains

ei. These global states are:

Sm_"(e_) = (el,e2,...,e,): V(ej)[j] = V(e_)[j]

and

= (el, e2,..., e.) :
l

V(ej)[il < V(ei)[i] ^ ¥e_: ei --* e_: V(e_)[i] > V(el)[i]

These two global states limit the levels in which ei occurs. The minimum

level containing e_ is particularly easy to compute: it is the sum of compo-

nents of the vector time stamp V(e_). So, p0 can construct the set of states

with level Ivl when, for each sequence Qi, the sum of the components of

the vector time stamp of the last element of Q_ is at least lvl. And, po can

remove event e_ from Q_ when Ivl is greater than the level of the global state

Smox(e,).
The two detection algorithms are linear in the number of global states,

but unfortunately the number of global states is fl(k") where k is the maxi-

mum number events a monitored process has executed. There are techniques

that can be used to limit the number of constructed global states. For exam-

ple, a process p_ need only send a message to P0 when Pi potentially changes

or when p_ learns that pj has potentially changed @. Another technique

is for p_ to send an empty message to all other processes when p_ potentially

changes @. These, and other techniques for limiting the number of global

states are discussed in [5].

2.2 Detecting Currently

In contrast to the previous two algorithms, detecting Currently _ is com-

putationally cheap but may block the monitored program, as discussed in
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Section 1. Figures 5 and 6 givea protocolthat detects Currently_ for

conditionsthatdo not referencethe number ofmessages sent by a processI.

This protocolisverysimple;the main ideaistoensurethatthecondition

holds long enough for the monitor to react.Whenever a processexecutes

an event that potentiallychanges _, itsends itsrelevantstateto P0,which

maintains the latestreceivedstatefor each processin P. Ifa processis

about to executean event that could make _ false,however, itfirstnotifies

P0 and blocksbeforeexecutingthisevent. The monitor then flushesallof

the linksintoP0, thereby examining allof the localprocessstatesof P up

to the time that the firstprocessblocked.If_ isnot found to hold by the

time all of the channels are flushed then Po releases the blocked process.

An example of the executionof thisprotocolisshown in Figure 7 in

which the condition_ -- Currentlyzl + z2 __5 isbeing monitored. Each

process can increment itsvalue of z without blockingsincedoing so can

only potentiallymake @ true.ProcessPl, however, beforedecrementing :

value of z sincedoing so potentiallymakes _ false.The monitor therefore

can considerthe statezl = 2,x2 --2 before_ could become false.

2.S Comparison with Other Algorithms

The work most similar in spirit to ours are the protocols developed by

Spezialetti [8]. In particular, her event holding condition is the same spec-

itication as our protocol for detecting Certainly _, and the specification of

her event occurrence condition is similar to the specification of our Possibly

algorithm. However, her protocols for non-local event detection are in-

complete, in that they can miss conditions that in fact held. For example,

the execution in Figure 8 shows such an execution. If the messages in tl_

figurecorrespondto the messages generatedinestablishingsimultaneousre-

gions[9],then her protocolwillnot detectzl --z2,yet in factthe condition

Definitely zl = z2 holds.

More precisely, a process's local state with respect to @ does not change when that

process sends a message.



Our notion of possibly and definitely is closely related to the problem of

access anomaly detection in parallel debugging and program analysis [10].

An important difference is that we wish to detect predicates over the states

of the processes, while the access anomaly conditions are predicates over

sequences of states (typically these are the sequences of instructions between

synchronization events). Thus to apply our methods to access anomaly

detection, we would have to augment process states with information on the

read and write sets of global variables in a given instruction sequence. This

is in fact how dynamic methods for detecting anomalies operate.

Recent algorithms for dynamically detecting access anomalies have also

employed vector timestamps [2,3]. The Flowback Analysis technique [2],

computes before and after vectors for each synchronization event in a pro-

gram execution. These are directly related to our minimum and maximum

global states, Smin(ei) and Smaz(ei), for an event ei.

The Flowback Analysis technique first gathers traces of event sequences

and performs determines event orderings off-line. Then various analyses are

possible, of which access anomaly detection is just one. Our technique has

two potential advantages: fu_t, it does not require complete process traces

to be recorded, and second, processes need not report all synchronization

events, but only those that might change the predicate being detected. Of

course the disadvantage is the the predicate must be specified before execu-

tion of the program.

3 Breakpoints and Tracepoints in Meta

The Meta system [6] is a toolkit that provides the basic primitives needed

to build a non-real-time reactive system. It finds application in areas such

a8 distributed application management, performance monitoring, load bal-

auci_, and distributed debugging.

A Meta computation consists of a control progrum and the enmronment

which it monitors and controls (see Figure 9). In the case of debugging,

the control program is the distributed debugger, and the environment is the



distributed debuggee program. Using the Meta toolkit, the environment

can be instrumented with sensors and actuators in order to expose its state.

The control program monitors and controls the environment through the

use of guarded commands (i.e. of the form when condition do action) that

reference the sensors and actuators of the instrumented environment. These

guarded commands are compiled into a low-level poetfix language that is

executed by interpreters that reside in stubs co-located with the components

of the distributed environment (in our case the processes of the debuggee

program). This architecture facilitates fast notification and reaction. Each

condition is a proposition on the state of system, and the action portion is a

sequence of actuator invocations that is executed atomically. References to

sensors or actuators may be both local (within the entity to which the stub

is attached) or nonlocal, allowing one to write distributed control programs.

The toolkit includes other features, for describing the system structure, fault

tolerance and concurrency control, that do not concern us here.

To make Meta useful for distributed debugging, we wish to instrument

the debuggee program to provide the breakpoint and tracepoint facilities

familiar to most programmers. In rule-based debuggers, breakpoints are

often modeled as when condition do stop program, with the (often unstated)

assumption that the state in which the program is stopped is (the first) one in

which condition became true. As we have seen, when the condition is a global

predicate, we must relax these requirements and detect the condition some

time after it has happened, or perturb the computation being monitored.

Also, since guarded commands are evaluated on the same computers as a

the processes that they are monitoring, their impact on the performance of

the debuggee is a concern.

However there is a practical problem with the Meta implementation even

with strictly local predicates. If a local predicate such as

when in_procedure(proc3) do stop

is implemented as an interpreted guarded command, there will be a small

10



but significant delay between detection of the condition and stopping the

program. To avoid this we can model such a breakpoint as a modified kind

of sensor that first halts the program, and then reports to the interpreter

that the condition has become true and that the program is halted. In this

view, Meta is monitoring a modified program that consists of the original

program and the primitive breakpoints. We find utility in this concept for

other applications of Meta. For instance when controlling a pressure vessel

in an industrial automation project, one may prefer to use a pressure sensor

that is directly connected to a safety shutoff valve. Such a sensor would

report a potentially unsafe pressure reacling after having shut off the valve,

rather than relying on timely response from the Meta system to turn off the

valve.

We are now incorporating these algorithms into the Meta implementa-

tion for use in debugging and other application areas.
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Figure 2: An execution and the corresponding lattice of global states.
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Possibly(4>): begin

% Synchronize processes and distribute ¢

send ¢ to all processes;

current := global state 5'(0, 0.... ,0);

release processes;

lvl := O;

do no state in current satisfies _ --_

last := current

irl:= lvl+ 1;

current :-- states of"level l_l reachable from a state in last;

od

end;

report Possibly @

Figure 3: Algorithm for detecting Possibly _.
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Definitely(¢): begin

% Synchronize processes and distribute

send ¢ to all processes;

last := global state S(O, 0,..., 0);

release processes;

remove all states in laJt that satisfy ¢;

lvl := 1;

% Invariant: I_t contains all states of level lul- 1 that are accessable

% from S(O, 0,..., O) without passing through a state satisfying ¢.

do last _ { }

current := staten of level lvl reachable from a state in last

remove all states in c.rrent that satisfy _;

lvi := ivl + 1; iaJt := c.rrent

od

end;

report De._nitely

Figure 4: Algorithm for detecting Definitely 4_.
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Currently(C): begin

M: array [1..n] of state := all empty;

a: array [1..n] of integer := all O;

send ¢ to all processes;

do M does not satisfy _) --_

receive message m from process i;

if m is a state message then M[i] := m

she ff m is a block message then

a[i] :=. - 1;

send ack(i) to all processes except i

else if m is an ack(j) message then

aLi]:= a[j] - 1:
ifa[j] = 0 then send unblock to process j; M[i] := empty;

od

end;

report Currently ¢_

Figure 5: Monitor protocol for detecting Currently ,_.
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Client: cobegin

receive _;

for each event e that will potentially change _ do

if e potentially rejects • then

send block to monitor;

receive unblock;

execute • and send state to monitor

else execute e and send state to monitor

od

D
do true -_

receive ack(j);

send ack(j) to monitor

od

coend

Figure 6: Client protocol for detecting CurrentJy @.

21 :'-2 Zl := 1? (_ blocks)

Figure 7: _ = (6'urrent/yzl + z2 >_ 5).
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:El :'- 4 Z 1 := 3

P2 I I

Z2 :'- 3 Z2 :_ 4

Figure 8: _ = (x I = 2:2).

actuators

control _program debuggee

sensors

Figure 9: The Meta computation model
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